CIP-Net: Continual Interpretable Prototype-based Network
2026 - AAAI 2026
Di Valerio, F; Proietti, M; Ragno, A.; Capobianco, R.
Accepted, will be published soon.
XAI-Guided Continual Learning: Rationale, Methods, and Future Directions
2025 - WIREs Data Mining and Knowledge DiscoveryWIREs Data Mining and Knowledge Discovery
Proietti, M; Ragno, A.; Capobianco, R.
10.1002/widm.70046
On Logic-based Self-Explainable Graph Neural Networks
2025 - NeurIPS 2025
Ragno, A.; Plantevit, M.; Robardet, C.
NeurIPS Page
Faithful Explanations for Graph Classification using Logic
2025 - ECML-PKDD 2025
Ragno, A.; Plantevit, M.; Robardet, C.
10.1007/978-3-032-06078-5_7
Leveraging internal representations of GNNs with Shapley Values
2025 - Data Mining and Knowledge Discovery
Kamal, A.; Ragno, A.; Plantevit, M.; Robardet, C.
10.1007/s10618-025-01159-7
IMPO: Interpretable Memory-based Prototypical Pooling
2025 - WSDM 2025
Ragno, A.; Capobianco, R.
10.1145/3701551.3703543
Essential Oils as Antimicrobials against Acinetobacter baumannii: Experimental and Literature Data to Definite Predictive Quantitative Composition–Activity Relationship Models Using Machine Learning Algorithms
2025 - Journal of Chemical Information and Modeling
Astolfi, R.; Oliva, A.; Raffo, A.; Sapienza, F.; Ragno, A.; Proia, E.; Mastroianni, C. M.; Luceri, C.; Bozovic, M.; Mladenovic, M.; Papa, R.; Bottoni, P.; Mazzinelli, E.; Nocca, G.; Ragno, R.
10.1021/acs.jcim.4c02389
Transparent Explainable Logic Layers
2024 - ECAI 2024
Ragno, A.; Plantevit, M.; Robardet, C; Capobianco, R.
10.3233/FAIA240579
Identifying Candidates for Protein-Protein Interaction: A Focus on NKp46’s Ligands
2024 - First Workshop on Explainable Artificial Intelligence for the medical domain (Colocated with ECAI 2024)
Borghini, A; Di Valerio, F.; Ragno, A.; Capobianco, R.
https://ceur-ws.org/Vol-3831/paper14.pdf
Memory Replay For Continual Learning With Spiking Neural Networks
2023 - IEEE 33rd International Workshop on Machine Learning for Signal Processing (MLSP)
Proietti, M; Ragno, A.; Capobianco, R.
10.1109/MLSP55844.2023.10285911
Understanding Deep RL Agent Decisions: a Novel Interpretable Approach with Trainable Prototypes
2023 - XAI.it 2023 - Italian Workshop on Explainable Artificial Intelligence 2023
Ragno, A.; La Rosa, B.; Capobianco, R.
https://ceur-ws.org/Vol-3518/paper1.pdf
Prototype-based Interpretable Graph Neural Networks
2022 - IEEE Transactions on Artificial Intelligence
Ragno, A.; La Rosa, B.; Capobianco, R.
10.1109/TAI.2022.3222618
Explainable AI in drug design: self-interpretable graph neural network for molecular property prediction using concept whitening
2022 - 3rd Molecules Medicinal Chemistry Symposium: Shaping Medicinal Chemistry for the New Decade
Proietti, M; Ragno, A.; Capobianco, R.
Ligand-based and structure-based studies to develop predictive models for SARS-CoV-2 main protease inhibitors through the 3d-qsar. com portal
2022 - Journal of Computer-Aided Molecular Design
Proia, E.; Ragno, A.; Antonini, L.; Sabatino, M.; Mladenovič, M.; Capobianco, R.; Ragno, R.
10.1007/s10822-022-00460-7
Machine Learning Data Augmentation as a Tool to Enhance Quantitative Composition–Activity Relationships of Complex Mixtures. A New Application to Dissect the Role of Main Chemical Components in Bioactive Essential Oils
2021 - Molecules
Ragno, A.; Baldisserotto, A.; Antonini, L.; Sabatino, M.; Sapienza, F.; Baldini, E.; Buzzi, R.; Vertuani, S.; Manfredini, S.
10.3390/molecules26206279
Semi-Supervised GCN for learning Molecular Structure-Activity Relationships
2021 - ELLIS Machine Learning for Molecules Workshop (ML4Molecules)
Ragno, A.; Savoia, D.; Capobianco, R.
arXiv:2202.05704
Molecule Generation from Input-Attributions over Graph Convolutional Networks
2021 - ELLIS Machine Learning for Molecules Workshop (ML4Molecules)
Savoia, D.; Ragno, A.; Capobianco, R.
arXiv:2202.05703